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Eigenfunction expansion of the dyadic Green’s function in a gyroelectric chiral medium
by cylindrical vector wave functions

Dajun Cheng
Wave Scattering and Remote Sensing Center, Department of Electronic Engineering, Fudan University,

Shanghai 200433, People’s Republic of China
~Received 14 June 1996!

Gyroelectric chiral media, which blend gyroelectric effects with those of optical activity, have potential
applications in chirality management. In the present investigation, based on the Ohm-Rayleigh method, the
dyadic Green’s function in an unbounded gyroelectric chiral medium is rigorously represented in an eigen-
function expansion of the cylindrical vector wave functions. The analysis reveals that the singularity of the
dyadic Green’s function is essentially static in character and independent of the chiral parameter. Due to the
effects of optical activity, two types of eigenwaves, left- and right-handed circularly polarized waves traveling
with different wave numbers, can be simultaneously excited in a gyroelectric chiral medium. Nonreciprocal
property of the dyadic Green’s function, owing to the gyroelectric effects, is revealed. It is found that the chiral
effects of the gyroelectric chiral medium are manageable with the introduction of a controllable gyroelectric
parameter to manage the wave numbers of the eigenwaves propagating in this class of medium.
@S1063-651X~97!10302-6#

PACS number~s!: 41.20.Jb, 42.25.Bs, 52.35.Hr
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I. INTRODUCTION

The direct solution method for source-free Maxwel
equations in an isotropic medium with vector wave functio
was first proposed by Hansen@1# in the 1930s. This ap-
proach, which has been intensively developed by Stra
@2#, Morse and Feshbach@3#, and Tai@4# to solve the source
free and source-incorporated electromagnetic boundary v
problems in isotropic media, has found increasing inter
and importance. The vector wave functions have found v
satile applications and present great advantages comp
with other methods~e.g., the three-dimensional mome
method@5#, the coupled-dipole method@6#, and the integral
equation technique@7#! in solving both the source-free an
source-incorporated electromagnetic boundary value p
lems for resonance, scattering, radiation, and propaga
phenomena. For instance, the circular cylindrical vec
wave functions have been successfully employed in study
the radiation characteristics of a dipole antenna in the pr
imity of a gyroelectric cylinder@8#. The dyadic Green’s func
tion is one of the basic tools that are used to solve the sou
incorporated Maxwell’s equations. It is useful both
analyzing radiation problems@4,8,9# and in constructing in-
tegral equations for scattering problems@10,11#. The general
representation of the dyadic Green’s function expresse
terms of an expansion of the vector wave functions is
quired to study Raman and fluorescent scattering by ac
molecules embedded in a particle@12,13#, as well as to es-
tablish T-matrix formulation from Huygen’s principle an
the extinction theorem@14,15#. Furthermore, the eigenfunc
tion expansion of the dyadic Green’s function could a
provide fundamental insight into the physical process for
material under consideration. However, much effort is s
required in order to obtain the dyadic Green’s function
any given complex material when expressed in the
eigenfunction expansion of the vector wave functions.
551063-651X/97/55~2!/1950~9!/$10.00
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With recent advances in polymer synthesis techniqu
increasing attention is being attracted to the analysis of
teraction of electromagnetic waves with chiral medium
order to determine how to use this class of material to p
vide better solutions to current engineering problems@16–
18#. It has been shown that the most important characteris
of chirality is that two types of circularly polarized eigen
waves could simultaneously propagate in a chiral mediu
each traveling with a different wave number@16–18#. This
class of material can be utilized to construct antireflect
shields, novel reciprocal microwave components, and
tenna radomes@16–18#. Therefore, chirality managemen
i.e., the management of the effects of chirality, seems to h
potential applications in the control of the physical behavi
of devices that are made of chiral material, because the e
tromagnetic properties of chiral devices are directly co
nected with the chiral parameter. However, only limit
methods exist for chirality management once the chiral m
terial is created. One exception is through the introduction
certain forms of controllable anisotropy that can be realiz
either by employing the electro-optic and piezoelectric
fects, or by introducing certain forms of externally bias
controllable magnetic fields. With chirality management
the motivation for their investigations, Engheta, Jaggard,
Kowarz proposed the concept of a Faraday chiral med
@19# and examined the propagation characteristics of elec
magnetic plane waves in an unbounded Faraday chiral
dium that blends gyrotropic effects with those of optical a
tivity. The reflection and transmission properties
electromagnetic waves through a Faraday chiral slab w
finite longitudinal extent were investigated and the interp
between gyrotropic and chiral effects was studied@20#.
Krowne @21# presented general formulations of a compos
chiral-ferrite medium, including the dispersion relation, no
reciprocal properties, and polarization characteristics.
cently, field representations in a source-free gyroelectric c
ral medium@22# as well as a composite chiral-ferrite mediu
1950 © 1997 The American Physical Society
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55 1951EIGENFUNCTION EXPANSION OF THE DYADIC . . .
@23# have been presented in terms of the cylindrical vec
wave functions based on a spectral angular expan
method. Nevertheless, much effort is still necessary in or
to achieve a thorough understanding of chirality mana
ment.

A gyroelectric chiral medium, formed by immersing ch
ral objects in a gyroelectric material with arbitrary orient
tion, is a subset of the wider class referred to as bianisotro
media. In a gyroelectric chiral medium, the gyroelectric p
rameter may be managed through the introduction of an
ternally biased, controllable magnetic field. Important
search on general bianisotropic media has been presente
Post@24#, Kong @25#, and Chen@26#, among others. In con
tradistinction to these general considerations, the pre
contribution is intended to derive the eigenfunction exp
sion of the dyadic Green’s function in gyroelectric the chi
medium in terms of the solenoidal as well as irrotation
cylindrical vector wave functions. Another purpose of t
present study is to investigate the physical process thro
which the gyroelectric parameter would have a signific
effect on chirality management. These formulations are c
siderably simplified by using the Ohm-Rayleigh meth
@3,4# and introducing a set of linear combinations of the s
lenoidal vector wave functions. The formulations, which a
standard and straightforward, lead to explicit expression
the dyadic Green’s function in an unbounded gyroelec
chiral medium. In order to make the present formulati
available to practical applications, the contributions from
irrotational vector wave functions to the dyadic Green
function are intensively investigated, and the solenoidal p
are simplified by analytically evaluating the integrals w
respect to the spectral longitudinal and radial wave numb
respectively. It is found that the irrotational vector wa
functions in the full eigenfunction expansion of the dyad
Green’s function, which are essentially static in charac
not only contribute at the source points, but outside
source as well. It is also indicated that, due to the ch
effects of the gyroelectric chiral medium, two types of eige
waves, the left- and right-handed circularly polarized wav
can be simultaneously excited, each traveling with a differ
wave number. The fact that the wave numbers of these
eigenwaves are jointly determined by the gyroelectric a
chiral constitutive parameters makes it possible to man
the chiral effects through the introduction of a controllab
gyroelectric parameter. A nonreciprocal property of the d
adic Green’s function in the gyroelectric chiral medium
which arises from the gyroelectric effects, is revealed. T
present formulations can be verified by comparing their s
cial forms with existing results corresponding to isotrop
and chiral media.

In the following analysis, the harmonic exp~2ivt! time
dependence is assumed and suppressed throughout.

II. GENERAL FORMULATION

From a phenomenological point of view, a homogeneo
gyroelectric chiral medium can be characterized by the se
constitutive relations@19,22#,

D5«̄•E1 i jcB, ~1a!

H5 i jcE1B/m, ~1b!
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where «̄5«Ī t1 igez3Ī t1«zezez is the modified permittivity
dyadic of a gyroelectric medium, taking into accou
the contributions due to the chirality.jc and m are the
chiral parameter and permeability, respectively. He
Ī t5exex1eyey stands for the transverse unit idem factor, a
ej denotes the unit vector in thej direction.

Substituting the constitutive relations~1a! and ~1b! into
the source-incorporated Maxwell’s equations, the vec
Helmholtz equation in the composite gyroelectric chiral m
dium is obtained@19,22#:

“3“3E22vmjc“3E2v2m«̄•E5 ivmJ. ~2!

It should be noted that Eq.~2! satisfies the divergenc
equation“•«̄•E5re , where re is the density of electric
charge. If one takes the divergence of both sides of Eq.~2!,
we have“•«̄•E52i“•J/v. Recalling the current continuity
theorem“•J5ivre , we see that Eq.~2! satisfies the diver-
gence equation. Therefore, the divergence equation wo
not be taken into account in the following analysis in solvi
Eq. ~2!, since the solution of Eq.~2! would satisfy the diver-
gence equation automatically. However, the continuity eq
tion “•J5ivre , which imposes a constraint condition o
the source term of Eq.~2!, must be taken into account whe
one tries to find a full solution to the source-incorporat
Maxwell equations.

Noting the linearity of the vector identity~2!, the electric
field can be constructed from a three-dimensional trans
mation of current densityJ with respect to the dyadic
Green’s functionḠ~r ,r 8!

E5 ivmE
V8
J~r 8!•Ḡ~r ,r 8!dv8, ~3!

whereV8 denotes the volume occupied by the exciting c
rent source, and the current densityJ should satisfy the con-
tinuity equation“•J5ivre to ensure a reasonable solutio
to Eq. ~2!.

The differential equation, which the dyadic Green’s fun
tion in the gyroelectric chiral mediumḠ~r ,r 8! must satisfy,
can be obtained by substituting Eq.~3! into Eq.~2!. Straight-
forward mathematical manipulation results in

“3“3Ḡ~r ,r 8!22vmjc“3Ḡ~r ,r 8!

2v2m ē•Ḡ~r ,r 8!5 Īd~r2r 8!. ~4!

Here,Ī andd~r2r 8! denote unit dyadic and Diracd function,
respectively. Since in the present investigation only Eq.~4! is
concerned, the continuity equation“•J5ivre , which im-
poses a constraint condition on the exciting source shall h
nothing to do with the following formulations to derive th
eigenfunction expansion ofḠ~r ,r 8!.

In order to obtain the vector-wave-function-represen
dyadic Green’s function in an unbounded gyroelectric ch
medium that satisfies Eq.~4!, we employ the well-known
Ohm-Rayleigh method@3,4#. For this purpose, we first ex
pand the source term of Eq.~4! in terms of the solenoidal and
irrotational cylindrical vector wave functions@27# in a circu-
lar cylindrical coordinate system~r,f,z!:
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Īd~r2r 8!5E
0

`

dkrE
2`

`

dkz (
n52`

`

@An~kz ,kr!Mn
~1!~kz ,kr!

1Bn~kz ,kr!Nn
~1!~kz ,kr!

1Cn~kz ,kr!Ln
~1!~kz ,kr!#, ~5!

where kz ,kr are the spectral longitudinal and radial wa
numbers, respectively. The vector expansion coefficie
An(kz ,kr), Bn(kz ,kr), andCn(kz8 ,kr) are to be determined
by employing the orthogonality relationships among the
lindrical vector wave functions. Here, the solenoidal and
rotational cylindrical vector wave functions are defined
@2,14#

Mn
~ j !~kz ,kr!5“3@Cn

~ j !~kz ,kr!ez#, ~6a!

Nn
~ j !~kz ,kr!5

1

kl
“3Mn

~ j !~kz ,kr!, ~6b!

Ln
~ j !~kz ,kr!5“@Cn

~ j !~kz ,kr!#, ~6c!

wherekl5(k r
21k z

2)1/2, and the generating function is@22#

Cn
~ j !~kz ,kr!5Zn

~ j !~krr!ei ~n1f1kzz!, ~6d!

with

Zn
~ j !~krr!5H Jn~krr!,

Yn~krr!,
Hn

~1!~krr!,

Hn
~2!~krr!,

j51
j52
j53
j54,

~6e!

For the sake of self-consistency, the orthogonality re
tionships@27,28# of these vector wave functions can be su
marized:

E
2`

` E
2`

` E
2`

`

Mn
~1!~kz ,kr!•Mn8

~1!
~2kz8 ,kr8!dV

5E
2`

` E
2`

` E
2`

`

Nn
~1!~kz ,kr!•Nn8

~1!
~2kz8 ,kr8!dV

54p2krd~kr2kr8!d~kz2kz8!dn~2n8! , ~7a!

E
2`

` E
2`

` E
2`

`

Ln
~1!~kz ,kr!•Ln8

~1!
~2kz8 ,kr8!dV

5
4p2~kr

21kz
2!

kr
d~kr2kr8!d~kz2kz8!dn~2n8! , ~7b!

and
ts

-
-
s

-
-

E
2`

` E
2`

` E
2`

`

Mn
~1!~kz ,kr!•Nn8

~1!
~2kz8 ,kr8!dV

5E
2`

` E
2`

` E
2`

`

Nn
~1!~kz ,kr!•Ln8

~1!
~2kz8 ,kr8!dV

5E
2`

` E
2`

` E
2`

`

Ln
~1!~kz ,kr!•Mn8

~1!
~2kz8 ,kr8!dV50,

~7c!

wheredn(2n8) is the Kroneckerd function ~i.e., it is 1 for
n52n8 and 0 fornÞ2n8!. With proper mathematical ma
nipulation, we obtain the vector expansion coefficients
~5!:

An~kz ,kr!5
1

4p2kr
M2n

~1!8~2kz ,kr!, ~8a!

Bn~kz ,kr!5
1

4p2kr
N2n

~1!8~2kz ,kr!, ~8b!

Cn~kz ,kr!5
kr

4p2~kr
21kz

2!
L2n

~1!8~2kz ,kr!, ~8c!

where the primes over the cylindrical vector wave functio
denote that they are evaluated at the source pointr 8.

Then, let the dyadic Green’s function in an unbound
gyroelectric chiral medium have the following full eigen
function expansion in terms of the above defined cylindri
vector wave functions~the completeness property of the ve
tor wave functions@28# guarantees such a representation!

Ḡ~r ,r 8!5E
2`

`

dkzE
0

`

dkr (
n52`

`

@an~kz ,kr!Mn
~1!~kz ,kr!

1bn~kz ,kr!Nn
~1!~kz ,kr!

1cn~kz ,kr!Ln
~1!~kz ,kr!#, ~9!

where the vector expansion coefficientsan(kz ,kr),
bn(kz ,kr), andcn(kz ,kr) can be obtained from Eqs.~4!–~8!.
Substituting Eqs.~9! and ~5! into Eq. ~4!, which the dyadic
Green’s function must satisfy, and noting the instinct pro
erties of the vector wave functions@2,14,28#

Mn
~1!~kz ,kr!5

1

kl
“3Nn

~1!~kz ,kr!, ~10a!

Nn
~1!~kz ,kr!5

1

kl
“3Mn

~1!~kz ,kr!, ~10b!

“3Ln
~1!~kz ,kr!50, ~10c!

we end up with
an~kz ,kr!

bn~kz ,kr!J 5 1
2 @~kl

222vmjckl! Ī2v2m«̄#21
•@An~kz ,kr!1Bn~kz ,kr!#

6 1
2 @~kl

212vmjckl! Ī2v2m«̄#21
•@An~kz ,kr!2Bn~kz ,kr!#, ~11a!
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cn~kz ,kr!52
1

v2m
ē21

•Cn~kz ,kr!. ~11b!

It should be noted that the calculation that substitut
Eqs.~9! and~5! into Eq.~4! gives Eq.~11! is based upon the
condition that one can interchange the summation onn and
the integrals onkz ,kr . This condition can be justified if one
notes that the terms in the square brackets of Eqs.~5! and~9!
are continuous with respect tokz andkr , simultaneously.

To simplify the following analysis, we introduce a pair o
linear combinations of the above defined solenoidal vec
wave functions:

Vn
~ j !~kz ,kr!

Wn
~ j !~kz ,kr!J 5

Mn
~ j !~kz ,kr!6Nn

~ j !~kz ,kr!

&

5H Tv~kr ,kz!@Cn
~ j !~kz ,kr!#

TW~kr ,kz!@Cn
~ j !~kz ,kr!#

~12!

for j51,2,3,4. Here,Tv(kr ,kz) and Tw(kr ,kz) denote the
vector differential operators, whose explicit expressions
be straightforwardly obtained and will be omitted here. Ta
ing physical insight into the introduced vector wave fun
tionsV n

( j )(kz ,kr) andW n
( j )(kz ,kr), we find that they corre-

spond to the left- and right-handed circularly polariz
eigenwaves of wave number (k z

21k r
2)1/2, respectively.

Based on these combined vector wave functions, we can
write Eq. ~9! as

Ḡ~r ,r 8!5E
2`

`

dkzE
0

`

dkr (
n52`

`

@pn~kz ,kr!Vn
~1!~kz ,kr!

1qn~kz ,kr!Wn
~1!~kz ,kr!

1cn~kz ,kr!Ln
~1!~kz ,kr!#, ~13!

where

pn~kz ,kr!5
1

4p2kr
@~kl

222vmjckl! Ī

2v2m ē#21
•V2n

~1!8~2kz ,kr!, ~14a!

qn~kz ,kr!5
1

4p2kr
@~kl

212vmjckl! Ī

2v2m ē#21
•W2n

~1!8~2kz ,kr!, ~14b!

andcn(kz ,kr) is given as Eq.~11b!.
In this way, the dyadic Green’s function in an unbound

gyroelectric chiral medium is explicitly represented in t
form of the eigenfunction expansion in terms of the cylind
cal vector wave functions, as given in Eq.~13!. However, for
practical applications and interpretation to possible no
phenomena, mathematical simplification to Eq.~13! is nec-
essary, which will be reported in detail in the followin
analysis.
g

r

n
-
-

e-

d

l

III. CONTRIBUTIONS FROM THE IRROTATIONAL
VECTOR WAVE FUNCTIONS

In this section, we will simplify and give physical insigh
into the contributions from the irrotational vector wave fun
tions to the dyadic Green’s function. For the sake of con
nience, we rewrite the irrotational part of the dyadic Gree
function as

Ḡirr~r ,r 8!5E
2`

`

dkzE
0

`

dkr (
n52`

`

@cn~kz ,kr!Ln
~1!~kz ,kr!#

52
1

4p2v2m
«̄21

•E
2`

`

dkzE
0

`

dkr

3 (
n52`

` kr

kl
2 L2n

~1!8~2kz ,kr!Ln
~1!~kz ,kr!. ~15!

In Eq. ~15!, the integrals with respect to thekz and kr
variables can be analytically evaluated by using the met
of residues, similar to the procedure as outlined in detai
@29#:

Ḡirr~r ,r 8!5
1

4pv2m
«̄21

•““S 1

ur2r 8u D . ~16!

We can also verify that Eq.~16! is correct. If we take the
divergence of both sides of Eq.~4!, we have,
2v2m«̄•“•Ḡirr5“d~r2r 8!. However, since¹2~1/ur2r 8u!5
24pd~r2r 8!, we see that Eq.~16! is identically true. Recall-
ing the identity@30#

““S 1

ur2r 8u D52
4p

3
d~r2r 8! Ī1

1

r 5
~3RR2r 2Ī ! ~17!

with R5r2r 8 and r5ur2r 8u, we can rewrite Eq.~16! as

Ḡirr~r ,r 8!52
1

4pv2m H F4p

3
d~r2r 8!1

1

r 3G «̄21

2
3

r 5
«̄21

•RRJ . ~18!

From Eq.~18!, it is found that the singularity of the dy
adic Green’s function in a gyroelectric chiral medium, owin
to the contributions from the irrotational vector wave fun
tions, is2«̄21d~r2r 8!/~3v2m!, which generalizes the coun
terpart of isotropic media@27,31#. Equation~18! also indi-
cates that the irrotational vector wave functions in the f
eigenfunction expansion of the dyadic Green’s function c
tribute not only at source points, but also away from t
source, similar to the case of an isotropic medium@32#. An-
other important conclusion we could draw from Eq.~18! is
that the contributions from the irrotational vector wave fun
tions to the dyadic Green’s function in a gyroelectric chi
medium are essentially static in character, and indepen
of the chiral parameterjc , which indicates that the interpla
between gyroelectric and chiral parameters does not take
fect for the nonpropagating waves. The fact that the div
gence of the dyadic Green’s function in a gyroelectric chi
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medium does not depend on the chiral parameter leads to
results that the contributions from the irrotational part to
dyadic Green’s function are independent of the chiral para
eter as well.

IV. CONTRIBUTIONS FROM THE SOLENOIDAL
VECTOR WAVE FUNCTIONS

In this section, we will analytically evaluate thekr andkz
integrals for the solenoidal parts of the dyadic Green’s fu
tion arisen in Eq.~13!, respectively. This effort is intended t
make the results presented in Sec. II applicable in solving
source-incorporated boundary value problems of cylind
cally and planarly multilayered structures consisting of gy
electric chiral media.

A. Analytical evaluation of the kr integral

For simplicity, we rewrite the first term of Eq.~13! as

P̄5
1

4p2 E
2`

`

dkzE
0

` dkr

kr

3 (
n52`

`

Ā21
•V2n

~1!8~2kz ,kr!Vn
~1!~kz ,kr!, ~19!

where the explicit expression of the dyadicĀ21 are given in
the Appendix.

Applying the technique apparently attributable to So
merfeld @33# and the residue calculus through a modifi
contour with respect to thekr integral, we have
he
e
-

-

e
i-
-

-

E
0

`

dkr

V2n
~1!8~2kz ,kr!Vn

~1!~kz ,kr!

kr~kl2k1!~kl2k2!

5
ip

~k12k2!
(
j51

2
~21! j11

kl j
Vm

~3!.~kz ,kl j !

3V2n
~1!,~2kz ,kl j !2

1

unu~kz2k1!~kz2k2!

3TnTn8F S r,

r.
D unuGei @n~f.2f,!1kz~z

.2z,!#. ~20!

Here, r.5max~r,r8!, r,5min~r,r8!, kl j5(k j
22k z

2)1/2, and
the superscripts. and, denote that the vector wave func
tions and variables~z andf! are evaluated atr or r 8 corre-
sponding tor. or r, , respectively. It should be pointed ou
that the vector operatorsTv , Tv8, Tw , andTw8 used in this
subsection are the abbreviated notations ofTv(kr50,kz),
Tv8(kr50,kz), Tw(kr50,kz), and Tw8(kr50,kz), respec-
tively. Tv8(kr ,kz) and Tw8(kr ,kz) can be separately ob
tained from the vector operatorsTv(kr ,kz) andTw(kr ,kz),
but evaluated at the source pointr 8. In Eq. ~20! and in the
following formulations, only the terms corresponding
kj.0 are adopted for the summation. Also, we should r
ognize that the evaluation of Eq.~20! excludes the contribu-
tions from then50 term because the logarithmic singulari
of the zeroth-order Hankel function atkr50 does not give
rise to any contributions, as first pointed in@27# for isotropic
media.

Using the result of Eq.~20!, the integral with respect to
the kr variable in Eq.~19! can be analytically evaluated
which results in
P̄5
1

4p2 E
2`

`

dkz (
n52`

`

P̄nr5
1

4p2 E
2`

`

dkz (
n52`

`

@Prr
nrerer1Prf

nr eref1Prz
nrerez1Pfr

nr efer1Pff
nr efef

1Pfz
nrefez1Pzr

nrezer1Pzf
nrezef1Pzz

nrezez], ~21!

with

Prr
nr

Pff
nr J 5

er

ef
J •H p i

2 F (
j51

2
~21! j11Vn

~3!.~kz ,kl j !V2n
~1!,~2kz ,kl j !

~k12k2!kl j
1(

j53

4
~21! j11Vn

3.~kz ,kl j !V2n
~1!,~2kz ,kl j !

~k32k4!kl j
G

2
TnTn8@~r, /r.! unu#

2unu F 1

~kz2k1!~kz2k2!
1

1

~kz2k3!~kz2k4!
Gei @n~f.2f,!1kz~z

.2z,!#J • H er

ef
, ~22a!

Pfr
nr

2Prf
nr J 52

ef

er
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Pzz
nr5ez•H p i(

j55

6
~21! j11Vn

~3!.~kz ,kl j !V2n
~1!,~2kz ,kl j !

~k52k6!kl j
2

TvTv8@~r, /r.! unu#

unu~kz2k5!~kz2k6!
ei @n~f.2f,!1kz~z

.2z,!#J •ez . ~22d!

Applying the same procedure as outlined above, the integral with respect to thekr variable in the second term of Eq.~13!
can be analytically evaluated as
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~23!

where the explicit expression of dyadicQ̄nr can be obtained fromP̄nr, with the substitution ofV byW, TV by TW , TV8 by
TW8, andjc by 2jc , respectively.

The full eigenfunction expansion of the dyadic Green’s function in an unbounded gyroelectric chiral medium
summation ofḠirr~r ,r 8!, P̄, andQ̄. It can be easily examined that the expressions of Eqs.~21! and ~23! unify those of chiral
media@34#, wherek15k35k5 andk25k45k6 . The results presented in this subsection include the contributions owing t
singularity at the origin ofkr plane, which have been overlooked in the past work for isotropic media, as first pointed
@27#. It should also be pointed out that the eigenfunction expansion of the dyadic Green’s function, as given in the
form, is useful to analyze the source-incorporated electromagnetic boundary value phenomena of cylindrically mult
structures consisting of gyroelectric chiral media.

B. Analytical evaluation of the kz integral

Analytically evaluating thekz integrals arisen in Eqs.~19! and ~23!, we obtain
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P ff
nz andP rf

nz can be separately obtained fromP rr
nz andP fr

nz with the replacement ofer by ef , andef by 2er , respectively.
The analytical expression of dyadicQ̄nz can be obtained fromP̄nz, with the substitution ofV byW, TV by TW , TV8 by TW8,
andjc by 2jc , respectively.

Here, we have employed the identity
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In this case, the full eigenfunction expansion of the dya
Green’s function is the summation ofḠirr~r ,r 8!, P̄, andQ̄. It
should be mentioned that the components arising in E
~24a! and ~24b! can be reduced to the counterparts of chi
media@34#, if we let «5«z andg50 in the constitutive rela-
tions and notingk15k35k5 , andk25k45k6 . This type of
eigenfunction representation of the dyadic Green’s funct
can be used to analyze the source-incorporated electrom
netic boundary value problems of planarly multilayer
structures consisting of gyroelectric chiral media.

Straightforward mathematical analysis reveals that fo

dipole source parallel to thez axis, only V0
(1)8 andW0

(1)8

terms exist for the dyadic Green’s function, while the dya
Green’s function of dipole sources perpendicular to thez

axis contains only theV1
(1)8 and W1

(1)8 terms. Therefore,
Sommerfeld integrals of dipole radiation in a gyroelect
chiral medium involve only those Sommerfeld integrals
dipole radiation in an isotropic medium@33,35#. So, various
approximate, asymptotic, and numerical methods for So
merfeld integrals@35# can be applied to study the electr
magnetic resonance, radiation, propagation, and scatte
phenomena of planarly multilayered gyroelectric chiral m
dia.

C. Basic physical insight

From the explicit expressions ofP̄ and Q̄, it is clear that
the erez , ezer , efez , and ezef components of the dyadi
Green’s function contributed from the solenoidal vec
wave functions in a gyroelectric chiral medium automatica
vanish, while the values of theeref andefer components are
identical but with opposite signs. These mathematical pr
erties of the dyadic Green’s functions due to the contri
tions from the solenoidal parts indicate that the samer- and
f- directed electric currents in an unbounded gyroelec
chiral medium would generate the opposite values of
electric fields in thef and r directions and do not excite
electric field in thez direction while for thez-oriented elec-
tric current, only z-directed electric field can be excited
These physical properties of the dyadic Green’s function
sult from the gyroelectric effects of the gyroelectric chir
medium. On the other hand, the eigenfunction expansio
the dyadic Green’s function in terms of the introduced vec
wave functionsV n

( j )(kz ,kr) andW n
( j )(kz ,kr) indicates that

due to the effects of optical activity@9,16–18,34# in gyro-
electric chiral medium, two types of eigenwaves, i.e.,
left- and right-handed circularly polarized waves traveli
with different wave numbers, can be simultaneously excit
Similar to the case of electromagnetic waves propagatin
c

s.
l

n
ag-

a

c

f

-

ng
-

r

-
-

c
e

-
l
of
r

e

.
in

a chiral medium@16–18#, the same equation~2! holds valid
for the electromagnetic waves of right- and left-handed c
cularly polarized types, traveling with different velocitie
The fact that the wave numbers of these eigenwaves
jointly determined by all the constitutive parameters reve
the existence of the interplay between chiral and gyroelec
parameters, and makes it possible to manage the chira
fects with the introduction of a controllable gyroelectric p
rameter, in the sacrifice of introducing gyroelectric effect

V. CONCLUSIONS

In the present contribution, the full eigenfunction expa
sion of the dyadic Green’s function in an unbounded gy
electric chiral medium is obtained in terms of the cylindric
vector wave functions, based on the Ohm-Rayleigh meth
The present formulations, which are greatly facilitated
introducing a pair of linear combinations of the solenoid
cylindrical vector wave functions V n

( j )(kz ,kr) and
W n

( j )(kz ,kr), generalize the canonical solutions of the dyad
Green’s function for isotropic media@4,27,31,32#, and re-
cover the counterparts of gyroelectric and chiral media@34#.
It is found that, due to the gyroelectric effects, the dya
Green’s function in a gyroelectric chiral medium has t
nonreciprocal property~as described in detail in@36#!, i.e.,
Ḡ~r ,r 8!ÞḠT~r 8,r !, with the superscriptT denoting the trans-
pose operator. The contributions from the irrotational vec
wave functions to the dyadic Green’s function, which a
essentially static in character, are independent of the ch
parameterjc and give rise to not only contributions at th
source points, but away from the source as well. Due to
effects of optical activity@9,16–18,34#, two types of eigen-
waves, the left- and right-handed circularly polarized wav
can be simultaneously excited in the gyroelectric chiral m
dium, each traveling with a different wave number. The
troduction of the off-diagonal constitutive parameterg not
only leads to the nonreciprocal property of the compos
gyroelectric chiral media, but also results in two novel ch
acteristics of the dyadic Green’s function contributed fro
the solenoidal vector wave functions:~1! the elimination of
theerez , ezer , efez , andezef components,~2! the equality of
the eref andefer components but with opposite signs. Th
fact that the wave numbers in the eigenfunction expansio
the dyadic Green’s function are jointly determined by t
gyroelectric and chiral parameters makes the chirality m
agement possible by introducing of a controllable gyroel
tric parameter to manage the wave numbers of the eig
waves propagating in the gyroelectric chiral mediu
Although the present formulations are somewhat cumb
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some, which is inevitable due to the complexity of the m
terial we have try to tackle, they can be verified by comp
ing its special forms with those of existing results~e.g.,
comparing the present singularity with that of isotropic m
dia @27,31#, and the contributions from the solenoidal vect
wave functions with the counterparts of chiral media@34#,
good agreement can be obtained!. It is believed that the
present formulations would be useful both in simplifying t
analysis of source-incorporated electromagnetic bound
value phenomena of cylindrically and planarly multilayer
structures consisting of gyroelectric chiral media, and in
derstanding the physical process of the chirality mana
ment. Applications of the present formulations in studyi
the electromagnetic scattering, resonance, propagation,
radiation phenomena relevant to gyroelectric chiral me
are under investigation, and will be reported in the near
ture.
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APPENDIX: EXPLICIT EXPRESSIONS OF Ā 21

Comparing the first term of Eq.~13! with Eq. ~19! and
noting the explicit expression ofP̄n(kz ,kr), we have

Ā215@~kl
222vmjckl! Ī2v2m«̄ #215Arrerer1Arferef

1Arzerez1Afrefer1Affefef1Afzefez1Azrezer

1Azfezef1Azzezez . ~A1!

Straightforward algebraic manipulation leads to
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wherek1 ,k2 ,k3 ,k4 ,k5 ,k6 are determined as

k15v@mjc1Am~«2g!1m2jc
2#, ~A6!
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