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Eigenfunction expansion of the dyadic Green’s function in a gyroelectric chiral medium
by cylindrical vector wave functions
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Gyroelectric chiral media, which blend gyroelectric effects with those of optical activity, have potential
applications in chirality management. In the present investigation, based on the Ohm-Rayleigh method, the
dyadic Green'’s function in an unbounded gyroelectric chiral medium is rigorously represented in an eigen-
function expansion of the cylindrical vector wave functions. The analysis reveals that the singularity of the
dyadic Green’s function is essentially static in character and independent of the chiral parameter. Due to the
effects of optical activity, two types of eigenwaves, left- and right-handed circularly polarized waves traveling
with different wave numbers, can be simultaneously excited in a gyroelectric chiral medium. Nonreciprocal
property of the dyadic Green'’s function, owing to the gyroelectric effects, is revealed. It is found that the chiral
effects of the gyroelectric chiral medium are manageable with the introduction of a controllable gyroelectric
parameter to manage the wave numbers of the eigenwaves propagating in this class of medium.
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PACS numbdss): 41.20.Jb, 42.25.Bs, 52.35.Hr

I. INTRODUCTION With recent advances in polymer synthesis techniques,
increasing attention is being attracted to the analysis of in-
The direct solution method for source-free Maxwell’s teraction of electromagnetic waves with chiral medium in
equations in an isotropic medium with vector wave functionsorder to determine how to use this class of material to pro-
was first proposed by Hansdd] in the 1930s. This ap- vide better solutions to current engineering problgié—
proach, which has been intensively developed by StrattoA8l- It has been shown that the most important characteristics
[2], Morse and FeshbadB], and Tai[4] to solve the source- ©f chirality is that two types of circularly polarized eigen-
free and source-incorporated electromagnetic boundary valuaves could simultaneously propagate in a chiral medium,

problems in isotropic media, has found increasing interesgach traveling with a different wave numble6—18. This

and importance. The vector wave functions have found vergl"’?SS of material can be ut|_I|zed to construct antireflection
Blelds, novel reciprocal microwave components, and an-

satile applications and present great advantages compar -

with other methods(e.g., the three-dimensional moment .o & radome$16-18. Therefore, Ch'r"’.‘“ty. management,

method[5], the coupled-dipole methd], and the integral i.e., the management of the effects of chirality, seems to have
i t’ hni ? : pl ina both th’ f 9 q potential applications in the control of the physical behaviors

equation techniqué7]) in solving bo € source-re€ and ¢ yeyices that are made of chiral material, because the elec-

source-incorporated electromagnetic boundary value profaqnetic properties of chiral devices are directly con-
lems for resonance, scattering, radiation, and propagatiofecied with the chiral parameter. However, only limited
phenomena. For instance, the circular cylindrical vectoimethods exist for chirality management once the chiral ma-
wave functions have been successfully employed in studyingarig| is created. One exception is through the introduction of
the radiation characteristics of a dipole antenna in the proxXcertain forms of controllable anisotropy that can be realized
imity of a gyroelectric cylinde[8]. The dyadic Green’s func- either by employing the electro-optic and piezoelectric ef-
tion is one of the basic tools that are used to solve the sourceects, or by introducing certain forms of externally biased
incorporated Maxwell’s equations. It is useful both in controllable magnetic fields. With chirality management as
analyzing radiation problemg},8,9 and in constructing in- the motivation for their investigations, Engheta, Jaggard, and
tegral equations for scattering problefi®,11]. The general Kowarz proposed the concept of a Faraday chiral medium
representation of the dyadic Green’s function expressed ifil9] and examined the propagation characteristics of electro-
terms of an expansion of the vector wave functions is remagnetic plane waves in an unbounded Faraday chiral me-
quired to study Raman and fluorescent scattering by activdium that blends gyrotropic effects with those of optical ac-
molecules embedded in a parti¢&2,13, as well as to es- tivity. The reflection and transmission properties of
tablish T-matrix formulation from Huygen’s principle and electromagnetic waves through a Faraday chiral slab with
the extinction theorenmi14,15. Furthermore, the eigenfunc- finite longitudinal extent were investigated and the interplay
tion expansion of the dyadic Green's function could alsobetween gyrotropic and chiral effects was studigd].
provide fundamental insight into the physical process for theKrowne [21] presented general formulations of a composite
material under consideration. However, much effort is stillchiral-ferrite medium, including the dispersion relation, non-
required in order to obtain the dyadic Green’s function inreciprocal properties, and polarization characteristics. Re-
any given complex material when expressed in the fullcently, field representations in a source-free gyroelectric chi-
eigenfunction expansion of the vector wave functions. ral medium[22] as well as a composite chiral-ferrite medium
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[23] have been presented in terms of the cylindrical vectowhere e=¢l,+ige,X|,+¢,€,€, is the modified permittivity
wave functions based on a spectral angular expansiodyadic of a gyroelectric medium, taking into account
method. Nevertheless, much effort is still necessary in ordethe contributions due to the chiralit. and u are the
to achieve a thorough understanding of chirality manageehiral parameter and permeability, respectively. Here,
ment. li=e.e+66, stands for the transverse unit idem factor, and
A gyroelectric chiral medium, formed by immersing chi- € denotes the unit vector in thedirection.
ral objects in a gyroelectric material with arbitrary orienta-  Substituting the constitutive relatiofda) and (1b) into
tion, is a subset of the wider class referred to as bianisotropithe source-incorporated Maxwell's equations, the vector
media. In a gyroelectric chiral medium, the gyroelectric pa-Helmholtz equation in the composite gyroelectric chiral me-
rameter may be managed through the introduction of an exdium is obtained19,22:
ternally biased, controllable magnetic field. Important re-
search on general bianisotropic media has been presented by VXVXE-20uéVXE—w?ue E=iould. 2
Post[24], Kong[25], and Cher{26], among others. In con-
tradistinction to these general considerations, the present |t should be noted that Eq2) satisfies the divergence
contribution is intended to derive the eigenfunction expanequationV-e-E=p,, where p, is the density of electric
sion of the dyadic Green’s function in gyroelectric the chiralcharge. If one takes the divergence of both sides of(Ex.
medium in terms of the solenoidal as well as irrotationalwe haveV-e-E=—iV-J/w. Recalling the current continuity
cylindrical vector wave functions. Another purpose of thetheoremV-J=iwp,, we see that Eq(2) satisfies the diver-
present study is to investigate the physical process througfence equation. Therefore, the divergence equation would
which the gyroelectric parameter would have a significantot be taken into account in the following analysis in solving
effect on chirality management. These formulations are congg. (2), since the solution of Eq2) would satisfy the diver-
siderably simplified by using the Ohm-Rayleigh methodgence equation automatically. However, the continuity equa-
[3,4] and introducing a set of linear combinations of the so-tion V-J=iwp,, which imposes a constraint condition on
lenoidal vector wave functions. The formulations, which arethe source term of Ed2), must be taken into account when
standard and straightforward, lead to explicit expressions one tries to find a full solution to the source-incorporated
the dyadic Green’s function in an unbounded gyroelectrioviaxwell equations.
chiral medium. In order to make the present formulation Noting the linearity of the vector identit{2), the electric
available to practical applications, the contributions from thefield can be constructed from a three-dimensional transfor-
irrotational vector wave functions to the dyadic Green’smation of current densityd with respect to the dyadic
function are intensively investigated, and the solenoidal part§reen’s functionl(r,r’)
are simplified by analytically evaluating the integrals with
respect to the spectral longitudinal and radial wave numbers, _
respectively. It is found that the irrotational vector wave Eziw,uf Ar")-I(rr)dv’, 3
functions in the full eigenfunction expansion of the dyadic v

Green's function, which are essentially static in character, . .\, yenotes the volume occupied by the exciting cur-

not only contribute at the source points, but outside theent source, and the current densitghould satisfy the con-

source as well. It is al_so |r_1d|cated_ that, due to the ph'ra(inuity equationV-J=iwp, to ensure a reasonable solution
effects of the gyroelectric chiral medium, two types of eigen-, Eq.(2)

waves, the left- and right-handed circularly polarized waves, . . . . . ,

can be simultaneously excited, each traveling with a different The differential eqt'JatIOI‘.L whlch'the_dyadlc Green S func-
wave number. The fact that the wave numbers of these twHON in the gyroelectric chiral mediurii(r,r") must satisfy,
eigenwaves are jointly determined by the gyroelectric and@n b€ obtained by substituting Hg) into Eq. (2). Straight-
chiral constitutive parameters makes it possible to managiPrward mathematical manipulation results in

the chiral effects through the introduction of a controllable

gyroelectric parameter. A nonreciprocal property of the dy- VXVXI(rI')—20uéV XI(r ')
adic Green’'s function in the gyroelectric chiral medium,
which arises from the gyroelectric effects, is revealed. The —wz,u?IT(r,r’)=:S(r—r’). (4)

present formulations can be verified by comparing their spe-
cial forms with existing results corresponding to isotropic
and chiral media.

In the following analysis, the harmonic €xpi wt) time
dependence is assumed and suppressed throughout.

Here,| and8(r —r’) denote unit dyadic and Diragfunction,
respectively. Since in the present investigation only Bjjis
concerned, the continuity equatidh-J=iwp,, which im-
poses a constraint condition on the exciting source shall have
nothing to do with the following formulations to derive the

Il. GENERAL FORMULATION eigenfunction expansion df(r,r’).

From a phenomenological point of view, a homogeneous In order to obtain the vector-wave-function-represented
gyroelectric chiral medium can be characterized by the set dfyadic Green's function in an unbounded gyroelectric chiral

constitutive relation$19,22, medium thz_it satisfies Eq4), we e_mploy the WeII-I_<nown
Ohm-Rayleigh methodl3,4]. For this purpose, we first ex-
D=¢-E+ié.B, (1a  pand the source term of E@#) in terms of the solenoidal and

irrotational cylindrical vector wave function27] in a circu-
H=i¢.E+Blu, (1b)  lar cylindrical coordinate systeltp,,z):
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18(r—r’ )_f dkf dk, 2 [An(ky k)M D (K, k) f_J_J_mM(n”(kz,kp)-N“)( ky k/)dV
1 0 © o
+ Ba(ke kNG Kz 1K) :f f J N (kg k) - LD (=K} k) dV
+Cn(kz KoL (Kz )], ©)

N e R (1) roe! _
wherek, k, are the spectral longitudinal and radial wave _fﬁxj‘iwjingl)(kz'kp)'Mn’ (—kz ,ky)dV=0,
numbers respectively. The vector expansion coefficients

An(k;.K,), Ba(k, . k,), andCp(k} k,) are to be determined (70)

by employlng the orthogonality relationships among the cy-
lindrical vector wave functions. Here, the solenoidal and ir-
rotational cylindrical vector wave functions are defined a

whereé( ») is the Kroneckers function (i.e., it is 1 for
—n’ and 0 forn# —n"). With proper mathematlcal ma-
Smpulatlon we obtain the vector expansion coefficients of

M (K, k) =V X[ WDk, ke, (6a)
o ne An(ky k)= 2Ky, (8a)
N (k,, p)— V><|v|§1j’(kz, K,), (6b) 1 @
Bn(kZ1kp) k ( kzakp) (Sb)
L (ke k) = VLW (K, k)], (60)
-
wherek, = (k2+k2)"2 and the generating function [22] Calkz ky) = 472K+ L= (mke k), (80
T (k,,k,) =20 (k,p)el (M otka), (6d)  where the primes over the cylindrical vector wave functions
denote that they are evaluated at the source pdint
with Then, let the dyadic Green’s function in an unbounded

gyroelectric chiral medium have the following full eigen-

Jn(k,p), =1 function expansion in terms of the above defined cylindrical
20k p) = Yn(k,p), j=2 vector wave fulnctionéthe completeness property of thg vec-
n (Kpp)= Hgl)(kpp), ji=3 (66 tor wave functiong28] guarantees such a representgtion
HiP (kyp),  1=4,

_ _ F(r,r'>=f dsz dk, > [an(kz.k, )MV (k, k)
For the sake of self-consistency, the orthogonality rela- - 0 n=-—c
tionships[27,2§ of these vector wave functions can be sum-

(1)
marlzed +bn(k21 p)N (kZIkp)
+Cn(kz k)L (K k)], 9
ML royr
f_wf_mf_x Yk K o) M/ (—kz ky)dV where the vector expansion coefficienta,(k;,k,),
bn(k,,k,), andc,(k, ,k,) can be obtained from Eqé4)—(8).
1) (1) , Substituting Egs(9) and (5) into Eq. (4), which the dyadic
ul _xN (kz,kp) kp)dV Green'’s function must satisfy, and noting the instinct prop-
erties of the vector wave functiong,14,29
=477k, 8(K,— k') 5(k,~Ky;) Sn(—nr (78
MY (ke p>—— VXN (K, K,), (109
(1) '
f_xf_wf_w )(k, K ) Lol (kg k,)dV L
(1) N (1)
4772(k§+k§) , , Nn (k21kp) k)\ VXMn (k21 p) (1Ob)
i — (k,—k;) (k= K3) Sn(—nry,  (7b) " B
P VXLI’] (kzakp)_oy (loc)
and we end up with

aﬂ(kZ 1 p)

bk, k)| = EL(KK 2o pék)l —0ue] L [An(K, K,) +Bo(ky k,)]

+ 3 (I + 20 pék)] — 0?ue] T [An(ky k)~ Bk k)], (113
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1 Ill. CONTRIBUTIONS FROM THE IRROTATIONAL
Cn(Kz,K,)=— pm € 1 Ch(ky K,). (11b) VECTOR WAVE FUNCTIONS

In this section, we will simplify and give physical insight
It should be noted that the calculation that substitutingimo the contributions from the irrotational vector wave func-
Egs.(9) and(5) into Eq.(4) gives Eq.(11) is based upon the t|9ns to the dya(_1|c Gre_en’s f_unctlon. For the sake of conve-
condition that one can interchange the summatiomand  Nience, we rewrite the irrotational part of the dyadic Green'’s
the integrals ork, k. This condition can be justified if one function as
notes that the terms in the square brackets of Exjand(9)
are continuous with respect tg andk,, simultaneously. — , % o
Lip(r,r’)= B dk, 0

To simplify the following analysis, we introduce a pair of dk, 2 [Cn(kz*kp)LgD(kz’kp)]

linear combinations of the above defined solenoidal vector e
wave functions: 1 fw .
=————¢€ L dk f dk
0 M) M) dm’p - oY
Vn (kZlkp)) Mn (kzvkp)iNn (kakp) 0
Wik, k)|~ Kp 1y
n (ke Ky v2 x 3Lk k Lk k). (9
= —00 )\

:{Tv(kp,kz>[w<kz,kpn 1

Tw(k, k[P (K, k)] In Eg. (15), the integrals with respect to the, andk,,
variables can be analytically evaluated by using the method

for j=1,2,3,4. HereT,(k,,k,) and T,(k,.k,) denote the of residues, similar to the procedure as outlined in detail in
[Eat et B o p WA\ Tp 1¥Z,

vector differential operators, whose explicit expressions calgzg]:

be straightforwardly obtained and will be omitted here. Tak- 1 1

ing physical insight into the introduced vector wave func- r " 1

tionsV {)(k, k,) andW {)(k, k,), we find that they corre- it = 2o © VV( |r—r’|>' (16
spond to the left- and right-handed circularly polarized

eigenwaves of wave numberkf+ ki)lle respectively. We can also verify that Eq.16) is correct. If we take the
Based on these combined vector wave functions, we can rélivergence _ of both sides of Eq.(4), we have,
write Eq.(9) as —w?ue-V-TI',,=V&r—r’). However, sinceV(1/r—r’'|)=
—478(rr—r'), we see that Eq16) is identically true. Recall-
ing the identity[30]

lT(r,r’)zf_ dszo dkpn;_m [Pn(kz k) VDK, k)

1 47 —1 —
vV T :—?5(r—r’)l+—5(3RR—r2I) (17
+Gn(k, k) WD (K, k) rr '
+Cn(kz,kp)LE11)(kz,kp)], (13 with R=r—r’ andr=|r—r’|, we can rewrite Eq(16) as
where I (rr')= ! am 8 N Ele
i(r,r’)= 47_”02# 3 (r—r )+r_3 €
Pn(kz.k,)= a7k, [(k\—20umécky)! —;5¢ RRy. (18)
—?uel LV (=K, k), (149 From Eq.(18), it is found that the singularity of the dy-

adic Green'’s function in a gyroelectric chiral medium, owing
to the contributions from the irrotational vector wave func-
An(k, . K,)= Y= [(KS+2wuécky)l tions, is 2 r -r )/(39) ), which generahzes the.co_un-
™ Kp terpart of isotropic medi§27,31. Equation(18) also indi-
cates that the irrotational vector wave functions in the full
eigenfunction expansion of the dyadic Green’s function con-
tribute not only at source points, but also away from the
andcy(k, k) is given as Eq(11b). source, similar to the case of an isotropic medil@#]. An-

In this way, the dyadic Green'’s function in an unboundedother important conclusion we could draw from E8) is
gyroelectric chiral medium is explicitly represented in thethat the contributions from the irrotational vector wave func-
form of the eigenfunction expansion in terms of the cylindri- tions to the dyadic Green’s function in a gyroelectric chiral
cal vector wave functions, as given in E43). However, for medium are essentially static in character, and independent
practical applications and interpretation to possible novebf the chiral parametef., which indicates that the interplay
phenomena, mathematical simplification to Ef@) is nec- between gyroelectric and chiral parameters does not take ef-
essary, which will be reported in detail in the following fect for the nonpropagating waves. The fact that the diver-
analysis. gence of the dyadic Green'’s function in a gyroelectric chiral

—o2ue] LW (—k,, k,), (14b
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medium does not depend on the chiral parameter leads to the - V(l)/(—k k )VD(k, k)
results that the contributions from the irrotational part to the j dk, —n AR A A
dyadic Green’s function are independent of the chiral param- 0 Ko (ky—k1) (ky —k2)
eter as well. . 2 .
i (—1)i*?t
= V3= (kg Ky,
k) 2 Ky v Kek)

IV. CONTRIBUTIONS FROM THE SOLENOIDAL

VECTOR WAVE FUNCTIONS 1

In[(k;—ky) (k—ky)

XV (—k, kyj)
In this section, we will analytically evaluate tg andk,
integrals for the solenoidal parts of the dyadic Green’s func-
tion arisen in Eq(13), respectively. This effort is intended to
make the results presented in Sec. Il applicable in solving the
source-incorporated boundary value problems of cylindriHere, p.=maxp,p’), p-=min(p,p"), ky;=(k?—k2)¥? and
cally and planarly multilayered structures consisting of gyro-the superscripts> and < denote that the vector wave func-

p

Il
XT,T, (p_<) }el[n(¢>d)<)+kz(z>z<)]. (20)
>

electric chiral media.

A. Analytical evaluation of the k,, integral

For simplicity, we rewrite the first term of Eq13) as
P = fw dkfmdkp
"2 )%, &,

X 3 ALV (ko k) Vi k), (19

n=—ow

where the explicit expression of the dyadic! are given in
the Appendix.

Applying the technique apparently attributable to Som-
merfeld [33] and the residue calculus through a modified
contour with respect to thk, integral, we have

oo
o)

tions and variable§z and ¢) are evaluated at or r’ corre-
sponding top-. or p_, respectively. It should be pointed out
that the vector operators,, T,/, T,,, and T, used in this
subsection are the abbreviated notationsTotk,=0k,),
T, (k,=0k,), Ty(k,=0k,), and T, (k,=0k,), respec-
tively. T, (k,.k;) and T, (k,,k,) can be separately ob-
tained from the vector operatofs,(k, ,k,) and T,(k, k;),
but evaluated at the source poirit In Eq. (20) and in the
following formulations, only the terms corresponding to
k;>0 are adopted for the summation. Also, we should rec-
ognize that the evaluation of E(R0) excludes the contribu-
tions from then=0 term because the logarithmic singularity
of the zeroth-order Hankel function &},=0 does not give
rise to any contributions, as first pointed[&] for isotropic
media.

Using the result of Eq(20), the integral with respect to
the k, variable in Eq.(19) can be analytically evaluated,
which results in

1 (= S o= 1
=1 f_wdkzn;_m P”’EW J_mdkzn;w [Plre.e,+Priee,+Prree+Pilee+Piiee,
+Pyese,+ Poree,+ Phlee,+ Prleel, (21)
with
p;;g):ep] mi i (—1>i+1v;3)>(kz,kxj>v9a<(—kz,km+§ (—1>i+1vﬁ><kz,kﬂ>v<_lg<(—kz,km}
Ps) &) | 2 |i% (k1 —ka)Ky,j = (ka—Ka)Kyj
In|
_TvTv’[(P</P>) ] 1 n 1 ei[n(¢>*¢<)+kz(z>72<)] '[ep, (22@
2|n| (k;—kp)(k,—kp) (k= ks)(k,—ky) €
P?,;:,):_e(,s] w i (—1>i+1v$3>><kz.kxj>v<_1%<<—kz,kxj>_é <—1>i+1v<n3)><kz,kx,->v<_1;<<—kz,km}
Pl el 2= (k1—ka)Kyj = (ks—Ka)Kyj
i In|
_'TvTv’[(P</P>) ] 1 _ 1 ei[n(¢>f¢<)+k(zfz<)] .[ep (22b)
2|n| (kz;—kp)(k;—ky)  (k;—k3)(k,—Kg) €s
P=P24=Po=P3=0, (229

and
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(220

Pnp:ez_ Wli (_1)j+1V£13)>(kZ,k)\j)V(,12]<(_kZak)\j) T T [(P</P>) ‘] |[n(¢ 7(,5 )*kz(z —z<)] ez
22 “ (ks—Ke)kyj In|(k;—ks)(k,—kg)

Applying the same procedure as outlined above, the integral with respect kg Wagiable in the second term of E(L3)
can be analytically evaluated as

1 o * J—
f dkf E [+ 20 k)l = w?ue] W (— kg k)W (K, k)= 7= | dk, > Q"

p n=-—o

=12 f dk, E [Q)re.e,+ Qrse.e4t Qrre.e,+ QY ese,+ QY e e,+ Qe e+ QY ee,+ Qllee,+ Qllee],
(23

where the explicit expression of dyadZ' can be obtained fror®"?, with the substitution o¥/ by W, T,, by Ty, Ty by
Ty, and§; by —¢&., respectively.

The full eigenfunction expansion of the dyadic Green’s function in an unbounded gyroelectric chiral medium is the
summation ofl’;(r,r’), P, andQ. It can be easily examined that the expressions of Exfg.and (23) unify those of chiral
media[34], wherek,=k;=ks andk,=k,=Kkg. The results presented in this subsection include the contributions owing to the
singularity at the origin ok, plane, which have been overlooked in the past work for isotropic media, as first pointed out in
[27]. It should also be pointed out that the eigenfunction expansion of the dyadic Green’s function, as given in the present
form, is useful to analyze the source-incorporated electromagnetic boundary value phenomena of cylindrically multilayered
structures consisting of gyroelectric chiral media.

B. Analytical evaluation of the k, integral
Analytically evaluating thek, integrals arisen in Eq$19) and (23), we obtain
p= dk 2 P”Z——zf dk, > [PhZe,e,+Pe,e,+PhZe,e+Pllese,+Plee,

0 n=-—wx

472 P ppPp
+PlZese,+ Phlee,+ Phiee,+ Phiee), (243

— 1
Q= g [0, 3 =g [, 3 1QTie0,+ Qi Ot Qe Qe Qe

+Qj ee,+Qljee,+Qlree], (24b
where

3

nz_li ] 1 _ i+l
Pon™ eﬂ[k,,(kl—kz)-z( Y

v (— \/kz—kz,kp)v(l)(\/kz—kpz,k 1
VO (k=K k )V (— k= KE k,) kp(ks—k4)

Xé (i VA (==K k) VP (VK=K k,) [for z=7' 58
i VO (-2 k VP (=K =K2 k) | | 7 (for z<z"

w__ T i ey VO (- IRk ) VEGE-IZK,)| 1
w2 p(kl kz) 1= VA (V=2 k) VD (= I = K2 k,) | Kp(ks—ka)

Xé( e VA (— IZ=IZ K )V (K=K K,) [for 757/ o5

=3 Vv (VIZ=IE k )V (— kK2 k,) € lfor z<z' -

oz~ P2o=Ppz=P3=0, (259

Pl=— 26: —1)itix VY (==K k) Vi (Vkj —K2k,) for z=2' (259
“ k(ks =5 ) v (k- k2,k W= K=Kk, | for z<z'~
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P 4% andP g can be separately oblazined frdPf; and P g, vugr; the replacement of, by e,, ande, by —e,, respectively.
The analytical expression of dyad®@'” can be obtained fror®"?, with the substitution o¥/ by W, Ty, by T\, Ty by Ty,
and & by —¢&;, respectively.

Here, we have employed the identity

’ . 2 ’
fw i Vo (ke k) Vi (ko k) S (1)t VE (-l -k k) VR (VKK k) | for 222
0 Kk —kp)(ky—ka) Ko(ki—Kz) =1 VA (= k )V (—\kE-KEk,) | for z<Z'.

(26)

In this case, the full eigenfunction expansion of the dyadica chiral mediun{16-18, the same equatiof2) holds valid
Green’s function is the summation bf.(r,r'), P, andQ. It for the electromagnetic waves of right- and left-handed cir-
should be mentioned that the components arising in Eqsularly polarized types, traveling with different velocities.
(243 and(24b) can be reduced to the counterparts of chiralThe fact that the wave numbers of these eigenwaves are
media[34], if we let e=¢, andg=0 in the constitutive rela- jointly determined by all the constitutive parameters reveals
tions and notingk; =ks=ks, andk,=k,=ks. This type of  the existence of the interplay between chiral and gyroelectric
eigenfunction representation of the (_:iyadic Green’s funCtiorbarameters, and makes it possible to manage the chiral ef-
can be used to analyze the source-incorporated electromagsc(s with the introduction of a controllable gyroelectric pa-

netic boundary value problems of planarly multilayered ymeter, in the sacrifice of introducing gyroelectric effects.
structures consisting of gyroelectric chiral media.

Straightforward mathematical analysis reveals that for a

dipole source parallel to the axis, only V"' and W'
terms exist for the dyadic Green’s function, while the dyadic In the present contribution, the full eigenfunction expan-
Green's function of dipole sources perpendicular to the sion of the dyadic Green’s function in an unbounded gyro-
axis contains only thev(ll)' and W(ll)’ terms. Therefore, €lectric chiral medium is obtained in terms of the cylindrical
Sommerfeld integrals of dipole radiation in a gyroelectric VEctor wave functions, based on the Ohm-Rayleigh method.
chiral medium involve only those Sommerfeld integrals of The present formulations, which are greatly facilitated by
dipole radiation in an isotropic mediuf83,35. So, various introducing a pair of linear combinations of the solenoidal
approximate, asymptotic, and numerical methods for Someylindrical vector wave functions V{’(k, k,) and
merfeld integral35] can be applied to study the electro- W {'(k, k,), generalize the canonical solutions of the dyadic
magnetic resonance, radiation, propagation, and scatterifgreen’s function for isotropic medip4,27,31,32, and re-
phenomena of planarly multilayered gyroelectric chiral me-cover the counterparts of gyroelectric and chiral m¢a#.
dia. It is found that, due to the gyroelectric effects, the dyadic
Green’s function in a gyroelectric chiral medium has the
nonreciprocal propertyas described in detail if36)), i.e.,
i I'(r,r)#T7(r',r), with the superscripT denoting the trans-
From the explicit expressions &f andQ, it is clear that pose operator. The contributions from the irrotational vector
the e,e,, ee,, €,6,, and e, components of the dyadic wave functions to the dyadic Green’s function, which are
Green's function contributed from the solenoidal vectoressentially static in character, are independent of the chiral
wave functions in a gyroelectric chiral medium automaticallyparameteré, and give rise to not only contributions at the
vanish, while the values of tree, ande,e, components are  source points, but away from the source as well. Due to the
identical but with opposite signs. These mathematical propeffects of optical activity{9,16—18,34 two types of eigen-
erties of the dyadic Green’s functions due to the contribuwaves, the left- and right-handed circularly polarized waves,
tions from the solenoidal parts indicate that the samand  can be simultaneously excited in the gyroelectric chiral me-
¢- directed electric currents in an unbounded gyroelectricdium, each traveling with a different wave number. The in-
chiral medium would generate the opposite values of thdroduction of the off-diagonal constitutive parametemnot
electric fields in the¢ and p directions and do not excite only leads to the nonreciprocal property of the composite
electric field in thez direction while for thez-oriented elec- gyroelectric chiral media, but also results in two novel char-
tric current, only z-directed electric field can be excited. acteristics of the dyadic Green’s function contributed from
These physical properties of the dyadic Green'’s function rethe solenoidal vector wave functiond) the elimination of
sult from the gyroelectric effects of the gyroelectric chiral theesg,, e.€,, €,e,, ande,e, components(2) the equality of
medium. On the other hand, the eigenfunction expansion ahe e,e, and e,e, components but with opposite signs. The
the dyadic Green'’s function in terms of the introduced vectorfact that the wave numbers in the eigenfunction expansion of
wave functionsV '(k, k,) andW {'(k, k,) indicates that the dyadic Green’s function are jointly determined by the
due to the effects of optical activit}9,16—18,34in gyro-  gyroelectric and chiral parameters makes the chirality man-
electric chiral medium, two types of eigenwaves, i.e., theagement possible by introducing of a controllable gyroelec-
left- and right-handed circularly polarized waves travelingtric parameter to manage the wave numbers of the eigen-
with different wave numbers, can be simultaneously excitedwaves propagating in the gyroelectric chiral medium.
Similar to the case of electromagnetic waves propagating ilithough the present formulations are somewhat cumber-

V. CONCLUSIONS

C. Basic physical insight
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some, which is inevitable due to the complexity of the ma- 1 1 1
terial we have try to tackle, they can be verified by compar- Aw=A¢s=75 | T 13k —k) T (ke —ka(k =k |
ing its special forms with those of existing resulis.g., (=Ko —ka) (K —ks)(k 4)(A2)
comparing the present singularity with that of isotropic me-
dia[27,31, and the contributions from the solenoidal vector )
wave functions with the counterparts of chiral mefs#], A, =—A _r 1 _ 1
good agreement can be obtainett is believed that the ¢p P2 | (Ky— k) (Ky—Kp)  (Ky—kgz)(ky—kg) |’
present formulations would be useful both in simplifying the (A3)
analysis of source-incorporated electromagnetic boundary
value phenomena of cylindrically and planarly multilayered A=Ay, =A 4= Ay =0, (A4)
structures consisting of gyroelectric chiral media, and in un-
derstanding the physical process of the chirality manage- d
ment. Applications of the present formulations in studyingan
the electromagnetic scattering, resonance, propagation, and
radiation phenomena relevant to gyroelectric chiral media _ 1
are under investigation, and will be reported in the near fu- AZZ_(k)\—kS)(k)\—kfs)’ (AS)
ture.
wherek; ks ,K3,K,,Ks5,kg are determined as
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o ko= o péc— (e =)+ pu2€], (A7)
APPENDIX: EXPLICIT EXPRESSIONS OF A ~1
Comparing the first term of Eq13) with Eq. (19) and ke= o[ péct V(e +9) + u?&ll, (A8)
noting the explicit expression &,(k,,k,), we have
_ — - _ i 2.2
Ail:[(k?\_zwﬂgckx)'_wzﬂe ]71:Appepep+Ap</>epe¢ Ke=olpbevalet o)+ u%6l, (A9
FA8,6 T Ay ps8, T Ay p€us T+ Ay€s8+ AL 06, ko= (it Fsﬁuzég), (A10)
+A466, 1A L€ . (A1)
Straightforward algebraic manipulation leads to ke=w(péc— Vpe,+ ). (A11)
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